596,225 research outputs found

    Primary and secondary particle contributions to the depth dose distribution in a phantom shielded from solar flare and Van Allen protons

    Get PDF
    Calculations have been made using the nucleon-meson transport code NMTC to estimate the absorbed dose and dose equivalent distributions in astronauts inside space vehicles bombarded by solar flare and Van Allen protons. A spherical shell shield of specific radius and thickness with a 30-cm-diam. tissue ball at the geometric center was used to simulate the spacecraft-astronaut configuration. The absorbed dose and the dose equivalent from primary protons, secondary protons, heavy nuclei, charged pions, muons, photons, and positrons and electrons are given as a function of depth in the tissue phantom. Results are given for solar flare protons with a characteristic rigidity of 100 MV and for Van Allen protons in a 240-nautical-mile circular orbit at 30 degree inclination angle incident on both 20-g/sq cm-thick aluminum and polyethylene spherical shell shields

    Develop real-time dosimetry concepts and instrumentation for long term missions

    Get PDF
    The development of a rugged portable instrument to evaluate dose and dose equivalent is described. A tissue-equivalent proportional counter simulating a 2 micrometer spherical tissue volume was operated satisfactorily for over a year. The basic elements of the electronic system were designed and tested. And finally, the most suitable mathematical technique for evaluating dose equivalent with a portable instrument was selected. Design and fabrication of a portable prototype, based on the previously tested circuits, is underway

    Modelling the impact of treatment uncertainties in radiotherapy

    Get PDF
    Uncertainties are inevitably part of the radiotherapy process. Uncertainty in the dose deposited in the tumour exists due to organ motion, patient positioning errors, fluctuations in machine output, delineation of regions of interest, the modality of imaging used, and treatment planning algorithm assumptions among others; there is uncertainty in the dose required to eradicate a tumour due to interpatient variations in patient-specific variables such as their sensitivity to radiation; and there is uncertainty in the dose-volume restraints that limit dose to normal tissue. This thesis involves three major streams of research including investigation of the actual dose delivered to target and normal tissue, the effect of dose uncertainty on radiobiological indices, and techniques to display the dose uncertainty in a treatment planning system. All of the analyses are performed with the dose distribution from a four-field box treatment using 6 MV photons. The treatment fields include uniform margins between the clinical target volume and planning target volume of 0.5 cm, 1.0 cm, and 1.5 cm. The major work is preceded by a thorough literature review on the size of setup and organ motion errors for various organs and setup techniques used in radiotherapy. A Monte Carlo (MC) code was written to simulate both the treatment planning and delivery phases of the radiotherapy treatment. Using MC, the mean and the variation in treatment dose are calculated for both an individual patient and across a population of patients. In particular, the possible discrepancy in tumour position located from a single CT scan and the magnitude of reduction in dose variation following multiple CT scans is investigated. A novel convolution kernel to include multiple pretreatment CT scans in the calculation of mean treatment dose is derived. Variations in dose deposited to prostate and rectal wall are assessed for each of the margins and for various magnitudes of systematic and random error, and penumbra gradients. The linear quadratic model is used to calculate prostate Tumour Control Probability (TCP) incorporating an actual (modelled) delivered prostate dose. The Kallman s-model is used to calculate the normal tissue complication probability (NTCP), incorporating actual (modelled) fraction dose in the deforming rectal wall. The impact of each treatment uncertainty on the variation in the radiobiological index is calculated for the margin sizes.Thesis (Ph.D.)--Department of Physics and Mathematical Physics, 2002

    Analysis of radiation-induced cell death in head and neck squamous cell carcinoma and rat liver maintained in microfluidic devices

    Get PDF
    Objective The aim of this study was to investigate how head and neck squamous cell carcinoma (HNSCC) tissue biopsies maintained in a pseudo in vivo environment within a bespoke microfluidic device respond to radiation treatment. Study Design Feasibility study. Setting Tertiary referral center. Subjects and Methods Thirty-five patients with HNSCC were recruited, and liver tissue from 5 Wistar rats was obtained. A microfluidic device was used to maintain the tissue biopsy samples in a viable state. Rat liver was used to optimize the methodology. HNSCC was obtained from patients with T1-T3 laryngeal or oropharyngeal SCC; N1-N2 metastatic cervical lymph nodes were also obtained. Irradiation consisted of single doses of between 2 Gy and 40 Gy and a fractionated course of 5×2 Gy. Cell death was assessed in the tissue effluent using the soluble markers lactate dehydrogenase (LDH) and cytochrome c and in the tissue by immunohistochemical detection of cleaved cytokeratin18 (M30 antibody). Results A significant surge in LDH release was demonstrated in the rat liver after a single dose of 20 Gy; in HNSCC, it was seen after 40 Gy compared with the control. There was no significant difference in cytochrome c release after 5 Gy or 10 Gy. M30 demonstrated a dose-dependent increase in apoptotic index for a given increase in single-dose radiotherapy. There was a significant increase in apoptotic index between 1×2 Gy and 5×2 Gy. Conclusion M30 is a superior method compared with soluble markers in detecting low-dose radiation-induced cell death. This microfluidic technique can be used to assess radiation-induced cell death in HNSCC and therefore has the potential to be used to predict radiation response

    The risk of solar proton events to space missions

    Get PDF
    The total dose in rads-tissue from solar protons was tabulated for weekly time intervals, and the number of weeks which gave a dose above 25 rads behind 10 g/sq cm of aluminum for the active 6 years of the 19th cycle were called dangerous or large event weeks. The number of such event weeks was found to be only 3 weeks for the past 20 years. Even though the chance for smaller events is examined, it was found that for any reasonable, high confidence level (95%), the smaller events could be ignored. Consequently, the total particle flux for the 19th cycle was divided by a factor of 3 and determined a single large event week. Using this spectrum, the tissue dose in rads is calculated at the center of an aluminum spherical shell

    Development of a dosimeter for distributed body organs

    Get PDF
    Calculational methods for estimation of dose from external proton exposure of aribtrary convex bodies is briefly reviewed and all of the necessary information for the estimation of dose in soft tissue is presented. Special emphasis is on retaining the effects of nuclear reaction especially in relation to the dose equivalent

    MRI-only based radiotherapy treatment planning for the rat brain on a Small Animal Radiation Research Platform (SARRP)

    Get PDF
    Computed tomography (CT) is the standard imaging modality in radiation therapy treatment planning (RTP). However, magnetic resonance (MR) imaging provides superior soft tissue contrast, increasing the precision of target volume selection. We present MR-only based RTP for a rat brain on a small animal radiation research platform (SARRP) using probabilistic voxel classification with multiple MR sequences. Six rat heads were imaged, each with one CT and five MR sequences. The MR sequences were: T1-weighted, T2-weighted, zero-echo time (ZTE), and two ultra-short echo time sequences with 20 mu s (UTE1) and 2 ms (UTE2) echo times. CT data were manually segmented into air, soft tissue, and bone to obtain the RTP reference. Bias field corrected MR images were automatically segmented into the same tissue classes using a fuzzy c-means segmentation algorithm with multiple images as input. Similarities between segmented CT and automatic segmented MR (ASMR) images were evaluated using Dice coefficient. Three ASMR images with high similarity index were used for further RTP. Three beam arrangements were investigated. Dose distributions were compared by analysing dose volume histograms. The highest Dice coefficients were obtained for the ZTE-UTE2 combination and for the T1-UTE1-T2 combination when ZTE was unavailable. Both combinations, along with UTE1-UTE2, often used to generate ASMR images, were used for further RTP. Using 1 beam, MR based RTP underestimated the dose to be delivered to the target (range: 1.4%-7.6%). When more complex beam configurations were used, the calculated dose using the ZTE-UTE2 combination was the most accurate, with 0.7% deviation from CT, compared to 0.8% for T1-UTE1-T2 and 1.7% for UTE1-UTE2. The presented MR-only based workflow for RTP on a SARRP enables both accurate organ delineation and dose calculations using multiple MR sequences. This method can be useful in longitudinal studies where CT's cumulative radiation dose might contribute to the total dose

    Pharyngeal and Cervical Cancer Incidences Significantly Correlate with Personal UV Doses Among Whites in the United States

    Get PDF
    Because we found UV-exposed oral tissue cells have reduced DNA repair and apoptotic cell death compared with skin tissue cells, we asked if a correlation existed between personal UV dose and the incidences of oral and pharyngeal cancer in the United States. We analyzed the International Agency for Research on Cancer\u27s incidence data for oral and pharyngeal cancers by race (white and black) and sex using each state\u27s average annual personal UV dose. We refer to our data as ‘white’ rather than ‘Caucasian,’ which is a specific subgroup of whites, and ‘black’ rather than African-American because blacks from other countries around the world reside in the U.S. Most oropharyngeal carcinomas harboured human papilloma virus (HPV), so we included cervical cancer as a control for direct UV activation. We found significant correlations between increasing UV dose and pharyngeal cancer in white males (p=0.000808) and females (p=0.0031) but not in blacks. Shockingly, we also found cervical cancer in whites to significantly correlate with increasing UV dose (p=0.0154). Thus, because pharyngeal and cervical cancer correlate significantly with increasing personal UV dose in only the white population, both direct (DNA damage) and indirect (soluble factors) effects may increase the risk of HPV-associated cancer
    • …
    corecore